

Propuesta y análisis de una Estrategia de Electromovilidad para la Ciudad de México 2018-2030

Seminario ITAM – GIZ: "Electromovilidad: Un camino a seguir para mejorar la calidad del aire.

Oportunidades y retos"

27 de Noviembre del 2018

Carolina Inclan
Carbon Trust México

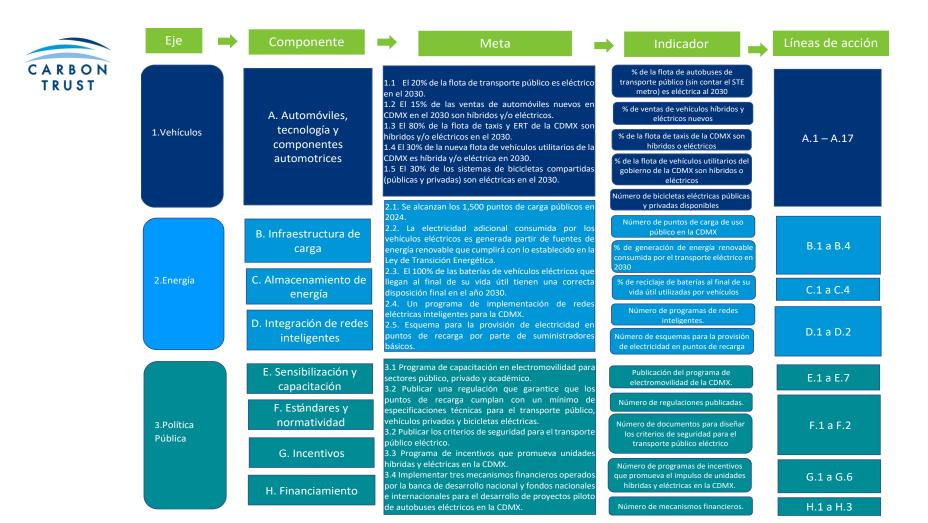
Contexto

- En términos de energía, el transporte consume el 58.8% del total. Dada la alta dependencia en combustibles fósiles, representan el 65% de las emisiones de GEI en la ciudad, mayormente por el uso del vehículo particular
- Respecto a las emisiones de contaminantes que afectan la calidad del aire:
 - El 75% de las PM 2.5 y 86% del carbono negro por transporte de carga y autobuses (alto consumo de diésel): afectan en mayor nivel la salud de la población
 - El 88% de Nox, siendo vehículos ligeros el 40%: uno de los principales precursores de ozono
- ☐ Gran reto: resolver el problema de contaminación atmosférica con transporte público eléctrico= mejor calidad del aire, menos congestión, reducción de emisiones GEI y seguridad energética (importación del 75%)

OBJETIVO

- Una Estrategia de Electromovilidad es el documento guía de la política pública para fomentar el transporte eléctrico de la Ciudad de México.
- Tiene como objetivo sentar las bases para desarrollar un programa sectorial de electromovilidad, articular otros esfuerzos relacionados que implementa la CDMX, encontrar áreas de oportunidad, así como diseñar esquemas y estrategias para cumplir con objetivos de cambio climático, calidad del aire, disminución del ruido, reducir la congestión vehicular y mejorar la oferta de transporte público con la electromovilidad.

VISIÓN PROPUESTA

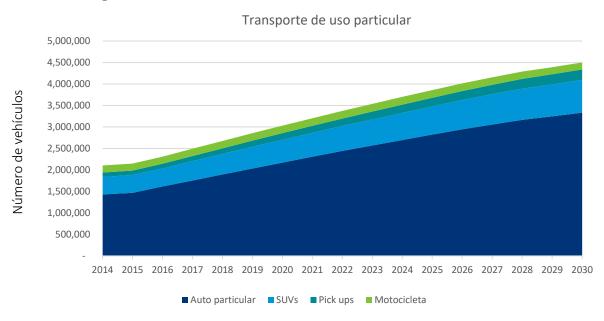

A largo plazo

La visión de largo plazo de la presente estrategia plantea que la Ciudad de México **alcance una movilidad de cero emisiones basada en la electricidad** como principal fuente de energía, generada a partir de energías renovables. Para alcanzar esta visión, la política de electromovilidad de la ciudad debe estar orientada a:

- Promover el uso de tecnologías eléctricas en los diferentes modos de transporte público y privado;
- Privilegiar la provisión de infraestructura de energía eléctrica, principalmente para el transporte público masivo;
- Implementar políticas públicas que estimulen el mercado de vehículos eléctricos, así como tecnologías de movilidad inteligente que permitan la intermodalidad de diversos sistemas de transporte eléctrico;
- Asegurar que la provisión de energía eléctrica provenga de fuentes renovables y limpias;
- Regular el reúso, reciclaje y disposición final de las baterías y sus componentes; y
- Fomentar el desarrollo de capacidades nacionales para la investigación y desarrollo de tecnologías de movilidad eléctrica.

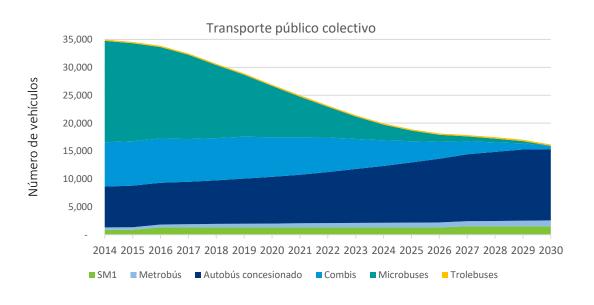
Ejes, metas, componentes y líneas de acción

Modelación de la línea base y algunos escenarios de introducción de vehículos eléctricos


Supuestos de la modelación para línea base

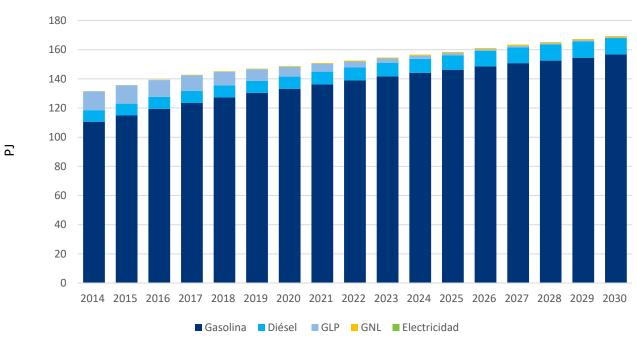
- Año base 2014 (último inventario disponible de la CDMX en 2016) con un periodo de proyección de 2014-2030. Metas intermedias: 2018-2024-2030:
 - Datos de actividad por categoría y año modelo
 - Factores de emisión por categoría, combustible y año modelo
 - Tipo de combustible por categoría
- 10 categorías vehiculares:
 - 4 categorías para vehículos privados
 - Taxi
 - Moto
 - Transporte público: Combi, micro, Metrobús
- Para M1 y autobuses concesionados se toman los datos de flota del PUEC,2014
- Proyección de consumo de combustibles, emisiones GEI y contaminantes criterio.

Línea base: vehículos ligeros particulares

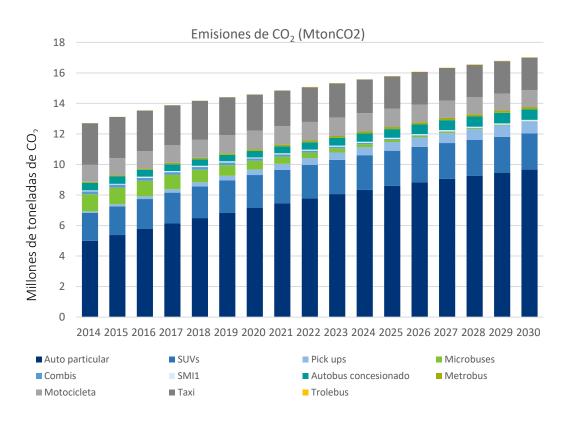

Para la proyección de flota se asumió un crecimiento de las ventas de vehículos nuevos de 1.2% anual, que representa la tasa de crecimiento promedio histórica en el periodo 2006-2015, que fue calculada con datos de las ventas anuales provistas por la Asociación Mexicana de Distribuidores de Automotores A.C. (AMDA) con efecto de contribuir a la presente Estrategia.

Línea base: transporte público

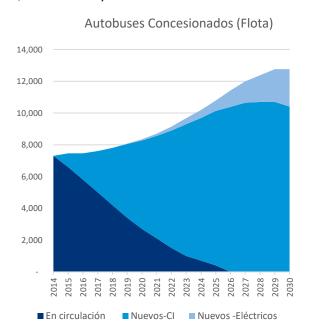
Cada modo de transporte fue modelado por separado de acuerdo con sus características y actividad. Los supuestos generales para todo el transporte público colectivo son: cada autobús tiene una vida útil de 10 años, posteriormente es retirado de circulación y sustituido por uno nuevo (CDMX, 2018); el rendimiento de combustible y el factor de emisión de CO2, son constantes en el periodo 2018- 2030; hay una introducción de EURO VI a partir del 2021 derivado de la NOM-044-SEMARNAT-2017, para el caso de Metrobús esta tecnología entra en circulación a partir del 2018.

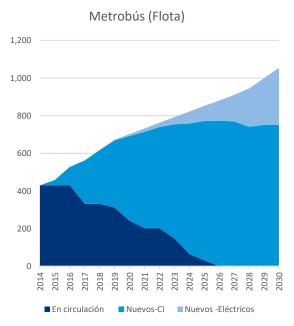


Consumo total de energía en línea base por tipo de combustible al 2030


Consumo de energía (PJ) por tipo de combustible

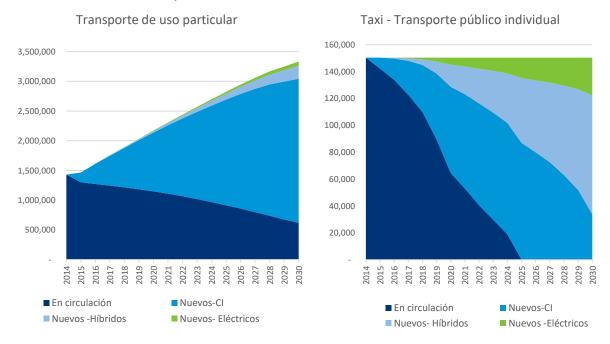
Emisiones de CO₂ en línea base por modo de transporte al 2030


Escenario Electromovilidad

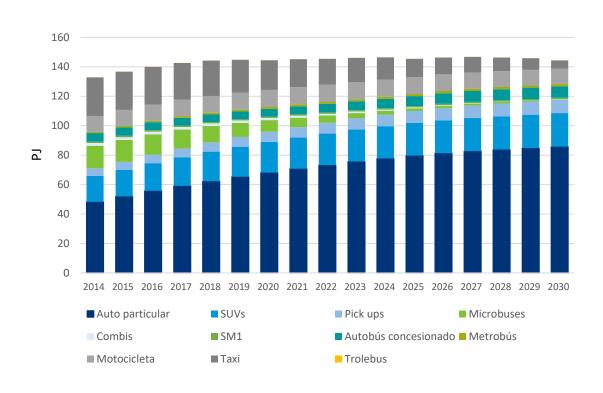

METAS	Supuestos
1) El 20% de la flota de transporte público colectivo es eléctrico en el 2030	 - 30% de la flota de Metrobús es eléctrica al 2030 – 300 buses eléctricos - 18% de la flota de autobuses concesionados, es eléctrica- 2, 300 buses eléctricos - Incorporación de 565 trolebuses - La eficiencia energética de un bus eléctrico: 1.2 kWh/km (Bloomberg New Energy Finance, 2018)
2) El 80% de la flota de taxis de la Ciudad serán híbridos o eléctricos en el 2030	- 60% son híbridos y 20% son eléctricos - Rendimiento de un vehículo eléctrico: 0.15 kWh/km (NISSAN, 2018) - Rendimiento de un vehículo híbrido: 25 km/l (TOYOTA, 2018)
3) Vehículos híbridos y eléctricos alcanzan el 15% de las ventas de vehículos ligeros nuevos en 2030	 El 15% son híbridos y el 5% son eléctricos Mismos rendimientos que taxis La meta está alineada a la meta nacional de SEMARNAT
4) La electricidad adicional consumida por la nueva flota de vehículos eléctricos es generada a partir de fuentes de energía renovable producida en la ciudad de México	Tres escenarios de consumo de electricidad: - Escenario red actual: se utiliza el factor de la red actual - Escenario NDC: cumplimiento con las Contribuciones Nacionales del sector eléctrico, con un 35% de energías limpias en 2024 y 43% en el 2030 - Escenarios Renovables: los proyectos de electromovilidad se realizan por medio de energías renovables

Transporte público

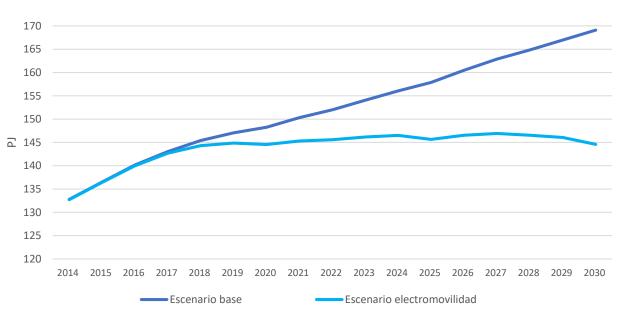
La siguiente muestra la incorporación de buses eléctricos para el sistema de concesiones, en donde en el 2030, los buses eléctricos representan el 18% de la flota total. La siguiente figura, muestra la incorporación de buses eléctricos al sistema de Metrobús, los cual representan el 30% de su flota en 2030.



Vehículos ligeros públicos y privados

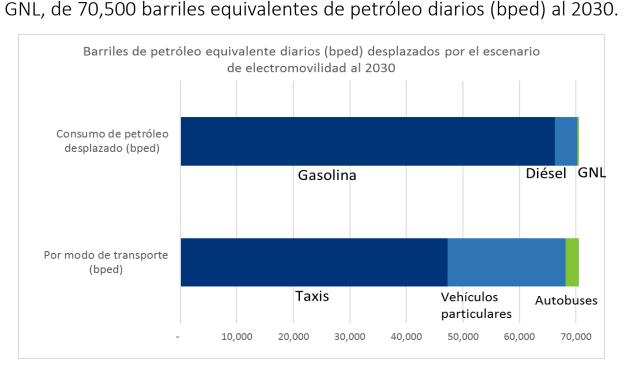

La incorporación de la meta de transporte de uso particular, en donde el 15% de las ventas de vehículos nuevos son híbridos o eléctricos en el 2030. La incorporación de estas tecnologías apenas es visible cuando es comparada con la flota en circulación, ya que únicamente representan el 6.7% del total (5% híbridos y 1.7% eléctricos). El escenario para la incorporación de taxis es más ambicioso, ya que en el 2030 el 60% de los taxis en circulación serán híbridos y el 20% serán eléctricos.

Consumo de energía (PJ) – Escenario de electromovilidad

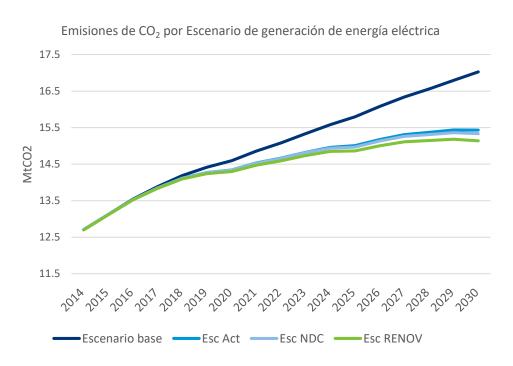


Consumo energético línea base vs escenario de electromovilidad

Ahorro de energía de 24.5 PJ, una reducción del 17% en el 2030, versus el primero.



Desplazamiento de combustibles fósiles


Por el escenario de electromovilidad habría un desplazamiento de gasolina, diésel y

Escenario de línea base versus el escenario de electromovilidad en emisiones de CO2

- Escenario base llega a 17.02 MtCO2.
- □ El Escenario Esc Act que utiliza el factor de emisión de la red actual: 15.5 MtCO2, una reducción de 1.5 millones de toneladas, 9% de reducción respecto al escenario base.
- □ El Escenario NDC (Esc NDC) donde la generación de energía eléctrica es generada en 35% por energías limpias y un 43% en el 2030, llega a 15.3 MtCO2. Una reducción de 1.7 millones de toneladas, 10% de reducción respecto al escenario base.
- □ El escenario de energía renovable (Esc RENOV) que asume una totalidad a base de energías renovables, como proyectos de generación distribuida o abasto aislado, llega a 15MtCO2, una reducción de 2MtCO2, una reducción de 12% respecto al escenario base.

Retos y oportunidades

- Cumplimiento de las NDC: El ámbito subnacional tiene el mayor potencial en la aportación en la reducción de emisiones por implementación de transporte público.
- De acuerdo con el INECC, en la ZMVM las concentraciones han excedido en 2.1 la NOM y 5.2 los límites de la OMS, con beneficios en salud de 16 miles de millones de pesos y de 30 mil millones de pesos respectivamente, de cumplirlas.
- Impulsar la electromovilidad como una gran oportunidad para la industria automotriz, siendo que México se encuentra entre los 10 principales productores y exportadores de vehículos a nivel mundial
- Análisis de las inversiones en infraestructura: electrolineras vs refinerías o estaciones de gas natural, y
 los riesgos asociados con los activos varados bajo un contexto internacional que busca la
 descarbonización bajo un cambio de patrones y tecnologías de la movilidad actual.
- Nuevas oportunidad de generación distribuida
- Seguridad energética: importaciones del 75% de las gasolinas y desabasto actual de GN
- Eficiencia energética

Carolina Inclan Associate- Carbon Trust Mexico

Carolina.inclan@carbontrust.com

¡Gracias!

